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SUMMARY

Glycogen synthase kinase 3 (GSK3) is a key regulator
in signaling pathways in both animals and plants.
Three Arabidopsis thaliana GSK3s are shown to be
related to brassinosteroid (BR) signaling. In a pheno-
type-based compound screen we identified bikinin,
a small molecule that activates BR signaling down-
stream of the BR receptor. Bikinin directly binds the
GSK3 BIN2 and acts as an ATP competitor. Further-
more, bikinin inhibits the activity of six other Arabi-
dopsis GSK3s. Genome-wide transcript analyses
demonstrate that simultaneous inhibition of seven
GSK3s is sufficient to activate BR responses. Our
data suggest that GSK3 inhibition is the sole activa-
tion mode of BR signaling and argues against
GSK3-independent BR responses in Arabidopsis.
The opportunity to generate multiple and conditional
knockouts in key regulators in the BR signaling
pathway by bikinin represents a useful tool to further
unravel regulatory mechanisms.

INTRODUCTION

Mammals possess three closely related isoforms of glycogen

synthase kinase 3 (GSK3a, GSK3b, and GSK3b2) whereas

Drosophila generates several isoforms from a single Shaggy-

locus by differential splicing. GSK3s play a major role in several

pathways including Wnt, Hedgehog, and insulin signaling,

mitosis, and apoptosis (Meijer et al., 2004). In contrast, plants
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appear to have a much larger set of divergent GSK3s. Analysis

of the Arabidopsis thaliana genome revealed the existence of

ten GSK3s, designated as ASKs for Arabidopsis SHAGGY-like

kinases, divided in four groups (Jonak and Hirt, 2002). Several

lines of evidence indicate that plant GSK3s have numerous roles

in development and stress responses (Jonak and Hirt, 2002).

However, in plants, the only known signal transduction pathway

mediated by GSK3s is brassinosteroid (BR) signaling (Li et al.,

2001; Vert and Chory, 2006; Zhao et al., 2002). BRs are a group

of polyhydroxylated steroid hormones implicated in multiple

developmental processes, including stem elongation, leaf

expansion, vascular development, seed germination, and resis-

tance to biotic and abiotic stresses (Bishop and Koncz, 2002;

Caño-Delgado et al., 2004). Genetic defects in biosynthesis or

perception of BRs result in dwarfism, dark-green and curled

leaves, reduced seed germination and fertility, and de-etiolation

in the dark (Bishop and Koncz, 2002; Clouse et al., 1996).

However, BR-overproducing plants or plants treated with bras-

sinolide (BL; Figure 1A) display an increase in hypocotyl and

petiole length and in overall plant growth (Choe et al., 2001).

BRs are perceived at the cell surface by direct binding to the

plasma membrane-localized BRI1 receptor (Bishop and Koncz,

2002). The next elucidated step in the pathway is the inhibition

of BIN2, which belongs to the group II GSK3s. This results in

the dephosphorylation of two plant-specific transcription

factors, BES1 and BZR1, that accumulate in the nucleus and

regulate expression of many known BR-responsive genes (Li

and Jin, 2007). Gain-of-function bin2 mutations or overexpres-

sion of the wild-type BIN2 gene result in a phenotype resembling

that of BR-deficient or BR-signaling mutants (Choe et al., 2002;

Li and Nam, 2002; Pérez-Pérez et al., 2002), whereas a triple

mutant lacking BIN2 and its two closest homologs is
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morphologically similar to mutants with a constitutively active

BR signaling pathway (Vert and Chory, 2006). Although the triple

knockout for group II GSK3s displays constitutive BR responses,

BES1 is not completely dephosphorylated, implying that other

kinases might be involved (Vert and Chory, 2006). Yet, it still

remains unknown whether other GSK3s or unrelated kinases

besides group II GSK3s regulate BR signaling.

By using a chemical genetics approach to identify compounds

inducing constitutive BR responses, we identified bikinin as

a strong activator of BR signaling. We show that seven Arabidop-

sis GSK3s are potential targets for bikinin and that bikinin directly

binds BIN2 and acts as an ATP-competitor. The specificity and

the inhibitory strength of bikinin toward particular Arabidopsis

GSK3s are determined by specific residues in the ATP-binding

pockets of the GSK3s. Genome-wide transcript analysis demon-

strates that simultaneous inhibition of seven GSK3s by bikinin

results in a vast transcriptional overlap compared with BL treat-

ment. This confirms that GSK3 inhibition is the sole activation

mode of BR signaling and strongly argues against the possibility

of GSK3-independent BR responses. In addition our data do not

exclude that other GSK3s, apart of group II, could have a poten-

tial role in BR signaling.

RESULTS

Bikinin Activates BR Signaling Downstream of BRI1
We screened a commercial 10,000 compound library to identify

small molecules that caused constitutive BR responses in Arabi-

dopsis thaliana Col-0 seedlings, similar to those found in plants

treated with the most potentbrassinosteroid, BL, or plantsoverex-

pressing the BR biosynthetic gene DWF4 or the BR signaling gene

BRI1 (Wang et al., 2001). One compound (4-[(5-bromo-2-pyridinyl)

amino]-4-oxobutanoic acid), designated bikinin (Figure 1A),

induced constitutive BR responses, including a significant

Figure 1. BR-Constitutive Responses In-

duced by Bikinin

(A) Chemical structure of BL and bikinin.

(B) Hypocotyl lengths of 3-day-old seedlings

treated with DMSO, 1 mM BL, or 30 mM bikinin for

3 days (means ± standard error (SE); **p value <

0.001 compared with Col-0 DMSO as determined

with standard two-tailed t test). Overexpressing

BRI1-GFP plants were included as a positive

control.

(C) Phenotypes of 3-day-old light-grown wild-type

plants treated with 0.5% DMSO, BL (1 mM), or bi-

kinin (30 mM) for 3 days (insets represent scanning

electron microscopy pictures of same treat-

ments). Experiments were repeated three times.

Arrowheads indicate the boundaries of the hypo-

cotyl.

increase in hypocotyl length (Figures 1B

and 1C and insets), long and bending

petioles, and blade-shaped, pale-green

leaves (Figure 1C). Furthermore, compa-

rable to a treatment with BL at micromolar

concentrations, lateral root density was

reduced (see Figure S1 available online).

Despite the strong resemblance between the respective pheno-

types, there was no structural similarity between bikinin and BL

(Figure 1A) or its biosynthetic intermediates. To identify the active

core structureand assess the requirementof the functionalgroups

of bikinin, we measured the biological activity of five derived mole-

cules (Figure S1) on lateral root density. The structure-activity

analysis revealed that removing the halogen, aromatic nitrogen,

or carboxyl group either completely abolished or significantly

reduced bikinin activity, implying that these functional groups

are essential for in planta bikinin activity (Figure S1). Inversely,

substitution of bromine with chlorine slightly increased potency.

To determine whether bikinin induces constitutive BR

responses by controlling the same subset of BR target genes,

we analyzed the effect of bikinin treatment on the RNA levels of

the BR feedback-regulated biosynthetic genes DWF4 (Choe

et al., 1998), CPD (Szekeres et al., 1996), ROT3 (Tanaka et al.,

2005), BR6OX1 (Shimada et al., 2003), and BR6OX2 (Shimada

et al., 2003), the genes encoding BR signaling components BRI1

(Clouse et al., 1996), BIN2 (Li and Nam, 2002; Li et al., 2001),

BSU1 (Mora-Garcı́a et al., 2004), BES1 (Li and Deng, 2005), and

BZR1 (Li and Deng, 2005), and the BR-inducible genes SAUR-

AC1 (Vert et al., 2005) and BAS1 (Neff et al., 1999). For all genes,

the expression changes closely resembled those of a BL treat-

ment (Figure S2) indicating that bikinin promotes BR responses

through a common transcriptional growth-regulatory module.

To get insight into the compound’s site of action, mutants in

BR biosynthesis (loss-of-function, cpd) (Vert et al., 2005), BR

signaling (loss-of-function, bri1-116) (Vert et al., 2005), and

gain-of-function bin2-1 (Li and Nam, 2002; Li et al., 2001) were

treated with BL, bikinin, or an inactive bikinin variant (Var2). In

agreement with previous reports, addition of BL rescued the

light-grown cpd dwarfed phenotype and the dark-grown de-etio-

lated phenotype (Figures 2A and 2B) (Szekeres et al., 1996; Vert

et al., 2005), but not the bri1-116 loss-of-function and bin2-1

Chemistry & Biology 16, 594–604, June 26, 2009 ª2009 Elsevier Ltd All rights reserved 595
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Figure 2. Dwarfed Phenotypes of Light- and Dark-Grown BR Mutants Rescued by Bikinin

(A) Phenotypes of five day old light-grown cpd, bri1-116 and bin2-1 mutants treated with 0.5 % DMSO, BL (1 mM), or bikinin (30 mM) for 3 more days.

(B) Phenotypes of three-day-old dark-grown cpd, bri1-116 and bin2-1 mutants germinated on 0.5 % DMSO, BL (1 mM), or bikinin (30 mM).

All experiments were repeated three times. Arrowheads indicate root-to-hypocotyl transition.
gain-of-function mutants (Figures 2A and 2B). Interestingly, biki-

nin treatment induced petiole and hypocotyl elongation in all

mutants both under light- and dark-grown conditions (Figures

2A and 2B), suggesting that bikinin acts downstream of the

BRI1 receptor, more precisely at the level or downstream of BIN2.

BIN2 negatively regulates the BR pathway by phosphorylation

of the closely homologous BZR1 and BES1/BZR2 nuclear

proteins (Vert and Chory, 2006). To show that bikinin induces

BR responses by activating these downstream components of

the BR signaling, we monitored the phosphorylation status of

BES1 in mock-, BL-, or bikinin-treated plants. Consistent with

previous reports (Vert and Chory, 2006), in plants grown on

control medium, BES1 was preferentially present in its phos-

phorylated form (Figures 3A and 3B). Addition of BL induced

a shift of BES1 to its unphosphorylated state and activated the

signaling cascade. As observed with BL, treatment with bikinin

resulted in accumulation of unphosphorylated BES1 starting at

concentrations of 5–10 mM (Figure 3A). Similar to BL (Yin et al.,

2002), BES1 dephosphorylation occurred within 30 min of bikinin

application (Figure 3B), suggesting that the effect of bikinin on

the phosphorylation state of BES1 is a primary response. These

data indicate that bikinin induces BR responses through inhibi-

tion of BES1 phosphorylation.

Bikinin Directly Inhibits BIN2 by Interfering
with ATP Binding
As BES1 phosphorylation is regulated by BIN2, we hypothesized

that the bikinin-induced shift of BES1 to its dephosphorylated
596 Chemistry & Biology 16, 594–604, June 26, 2009 ª2009 Elsevie
form might be due to direct inhibition of BIN2. Therefore, we

examined by in vitro kinase assays whether bikinin interferes

directly with BIN2 kinase activity. Bikinin reduced BIN2 kinase

Figure 3. Bikinin Induced BES1 Dephosphorylation

(A) Dose-response analysis of BES1 phosphorylation in response to bikinin

treatment. Western blots were performed with extracts from 35S:BES1-GFP

plants treated with a concentration range from 0 to 10 mM bikinin for 12 hr

and detected with anti-BES1 antibodies.

(B) Time-course analysis of BES1 dephosphorylation following bikinin treat-

ment. Western blots were carried out with extracts from 35S:BES1-GFP plants

treated with 50 mM bikinin over a period of 0 to 4 hr and detected with anti-

BES1 antibodies. BES1-P, phosphorylated BES1; *, nonspecific antibody-

reactive band (loading control).
r Ltd All rights reserved
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Figure 4. Binding and Specific Inhibition of Kinase Activity of BIN2 by Bikinin

(A) Autoradiography of a kinase assay with GST-BIN2 and MaBP-BES1 on a concentration range of 0 to 10 mM bikinin. Coomassie staining was used as loading

control.

(B) SPR sensorgrams for bikinin binding to GST-BIN2 after injection of different bikinin concentrations as indicated. The binding curves are overlaid by calculated

curves resulting from the global fits of the data to a 1:1 interaction model (c2 = 0.126). Reference and blank data are subtracted. The experiment was done in

triplicate.

(C) Docking of bikinin in GSK3b. The best-ranked docking position of the bikinin molecule (blue) in the GSK3b crystal structure 1UV5 (Bhat et al., 2003) compared

with that of the inhibitor 6-bromoindirubin-30-oxime (orange). The nitrogens of the bikinin molecule are in a position where they can make similar hydrogen bonds

with the backbone of Val135.

(D) The best ranked docking position of the bikinin molecule (pink) in the GSK3b crystal structure 1Q5K (Meijer et al., 2003) compared with the position of the

inhibitor AR-A014418 (brown). The amide of the bikinin molecule is in a position where it can make a similar hydrogen bond with the backbone oxygen of

Val135. Flipping of the bikinin pyridinyl ring will bring the pyridinyl nitrogen in a position where it can form a hydrogen bond with the backbone nitrogen of Val135.

(E) ATP competition experiment. Residual kinase activity of GST-BIN2 and MBP as a substrate is shown using 10 mM bikinin and a concentration range of 0.03 to

100 mM ATP. Error bars represent mean ± SE.
activity toward its substrate BES1 in a dose-dependent manner

(Figure 4A). The inhibitory effect of bikinin was already apparent

at 2.5 mM and became dramatic at 10 mM. The biologically inac-

tive Var2 did not inhibit BIN2 kinase activity, even at high concen-

trations (Figure S3). To demonstrate direct binding of bikinin with

BIN2, we carried out surface plasmon resonance (SPR) experi-

ments. Recombinant GST-BIN2 protein was immobilized on

a sensor chip through amine coupling and increasing concentra-

tions of bikinin were injected over the sensor surface. Bikinin

interacted with immobilized GST-BIN2 in a dose-dependent

manner (Figure 4B), with an increase in response starting from

a concentration of 10 mM. Interestingly, the inactive Var2

compound was also able to bind GST-BIN2, although the affinity

of this interaction was calculated to be about 2000 times lower

(Figure S4). In summary, these observations combined with

expression and mutant analyses allowed us to conclude that

BIN2 represents a direct target of bikinin.
Chemistry & Biology 16
To get insight into the binding mode and mechanism of inhibi-

tion of bikinin, we performed docking simulations of bikinin into

the crystal structure of human GSK3b. The docking solutions

for bikinin were compared with the position and interactions of

two known GSK3b inhibitors into two different crystal structures

of human GSK3b (1UV5 for 6-bromoindirubin-30-oxime [Meijer

et al., 2003], Figure 4C; 1Q5K for ARA014418 [Bhat et al.,

2003], Figure 4D). The best-ranked, lowest-energy-requiring

solution for docking of bikinin into both crystal structures was

very similar (Figures 4C and 4D). Comparison with the binding

interactions of the inhibitors in these structures shows that, like

the known inhibitors, bikinin can make two hydrogen bonds

with the backbone amide oxygen and nitrogen of Val135 of

GSK3b (Val118 in BIN2), which has a major contribution to the

binding energy. Furthermore, again similar to known inhibitors,

bikinin has a planar ring at the position where the kinase binds

the purine ring of ATP, suggesting that bikinin might interfere
, 594–604, June 26, 2009 ª2009 Elsevier Ltd All rights reserved 597
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with kinase activity by competing with ATP. To validate this

finding, we tested the in vitro kinase activity of BIN2 in the pres-

ence of 10 mM bikinin and increasing concentrations of ATP.

The inhibitory effect of bikinin was reduced with increasing

concentrations of ATP (Figure 4E), demonstrating that the inhibi-

tion of BIN2 kinase activity by bikinin is mediated by competing

with ATP in the ATP-binding pocket.

Bikinin Inhibits a Subset
of Arabidopsis GSK3 Kinases
To determine the specificity of bikinin toward different Arabidop-

sis GSK3 subfamilies, we analyzed the kinase activity of nine

ASKs in the presence of bikinin by using MBP as a general

substrate. Bikinin strongly inhibited the activity of the closely

related groups I and II (Figure 5A; Figure S5) with some residual

activity (6%–8%) for group I kinases and total inhibition (1%–2%

residual activity) for members of group II. Surprisingly, one

member of group III, ASKq, was moderately inhibited (20%

residual activity), whereas the activity of the other member,

ASKb, was not affected by bikinin. The activity of ASKd,

a member of group IV, was not inhibited. Furthermore, the

compound had no effect on the activity of three other Arabidop-

sis Ser/Thr kinases (AtMPK4, AtMPK6, and AtAURORA1;

Figure 5B). These data indicate that the activity of bikinin is

ASK specific, with additional specificity for certain subgroups.

To determine whether the action of bikinin is plant specific, we

tested the effect of bikinin on a panel of 77 human kinases (Table

S1) at two concentrations. In general, all human kinases were

poorly affected by bikinin. The human homolog of BIN2,

GSK3b, was inhibited by only �40% at 10 mM bikinin (Table

S1), conditions in which BIN2 activity was completely abolished

(Figure S5). Together, these data indicate that the strong in vitro

effect of bikinin on kinase activity is limited to specific subgroups

of plant GSK3s.

In Xenopus laevis, Wnt signaling mediated by the action of

GSK3b was shown to be essential for dorsal differentiation

during dorsoventral axis formation (He et al., 1995). To assess

the in vivo effect of bikinin on the proper patterning of Xenopus,

we applied bikinin to developing embryos, but found no observ-

able effect on dorsoventral axis formation (Figure S6), consistent

with the poor inhibition of GSK3b in vitro. These data suggest

that bikinin is not sufficiently potent in in vivo vertebrate systems

to inhibit GSK3b and to cause subsequent developmental

defects.

Given its capacity to act as an ATP-competitive inhibitor and

the highly conserved ATP-binding pockets of GSK3s, the spec-

ificity of bikinin for certain subgroups is remarkable and provides

a unique tool to study the different GSK3 subgroups. To further

understand which residues determine the specificity of bikinin,

homology models were built for BIN2 and the other ASKs, with

bikinin in a position determined by the docking simulations (Fig-

ure 5C). We examined the conservation of the bikinin binding site

in the different ASK models/sequences and human GSK3b.

Strikingly, the residue that interacts with the bikinin bromo

atom is a Met115 in group II ASKs, and a Leu in the other

ASKs and GSK3b (Figures 5C and 5D). In addition, several other

residues localized in the bikinin-binding site are not conserved

between the different ASKs and GSK3b, including Tyr117 of

BIN2, which is replaced by Phe in ASKd (Figures 5C and 5D).
598 Chemistry & Biology 16, 594–604, June 26, 2009 ª2009 Elsevie
To confirm these predicted interaction sites, we introduced the

mutations M115L or Y117F in the ATP binding pocket of BIN2.

As predicted, these mutations reduced the strong inhibition of

BIN2 activity by bikinin (Figure 5E), whereas mutating an unre-

lated T65 residue outside the binding pocket to Lys did not affect

inhibition by bikinin. Taken together, the predicted residues in

the ATP-binding pocket have an effect on bikinin binding and,

consequently, on the inhibitory strength of bikinin for the different

ASKs and the reduced potency toward the human GSK3b.

BL and Bikinin Have Largely Overlapping
Transcriptional Responses
Because bikinin inhibited seven plant GSK3s from which only

three (group II) were previously implicated in BR signaling (Vert

and Chory, 2006), we performed a genome-wide transcript anal-

ysis after BL and bikinin treatment to evaluate if BR responses are

entirely dependent on the group II GSK3s. Wild-type Col-0 seed-

lings were treated with 1 mM BL, 30 mM bikinin, or dimethyl

sulfoxide (DMSO) for 30 min or 2 hr. Shoots were collected for

RNA isolation. After normalization and statistical analysis of

expression levels, 272 genes were identified as significantly differ-

entially regulated by bikinin and/or BL compared with the DMSO

control (p % 0.05 after Benjamini and Hochberg’s multiple-

comparison correction and minimal 2-fold change) (Figure 6A;

Table S2). A subset of Gene Ontology (GO) terms (BiNGO) (Maere

et al., 2005) was used to identify the functional trends in the 272

responsive genes. This analysis showed that genes encoding

proteins involved in BR metabolism, BR biosynthesis, hormone-

mediated signaling, and transcription were significantly enriched,

consistent with the role of BL and bikinin in the BR signaling

cascade (Table S3A). Interestingly, genes expressed in response

to auxin and abiotic stimuli were also overrepresented.

Fold-change values normalized to the control treatment were

used to further analyze the significantly modulated genes. Bikinin

and BL transcriptional responses substantially overlapped as

88% (239 of 272 genes) of the genes were affected by both treat-

ments. A total of 179 genes (66%) responded similarly to BL and

bikinin, indicating that none of these genes were regulated in a

BL- or bikinin-independent fashion. However, 60 genes (22%)

were regulated differently; 29 genes were regulated in an oppo-

site manner and 31 genes had a complex behavior (Figure 6A;

Table S4A). Furthermore, another 31 genes were affected only

by bikinin and 2 genes were specific for BL (Figure 6A; Tables

S4B and S4C). Bikinin-specific responses were anticipated

based on the observation that bikinin was able to inhibit the

activity of not only BR-specific group II GSK3s but also group I

and one member of group III. BiNGO analysis (Maere et al.,

2005) of the 31 bikinin-specific genes showed overrepresenta-

tion of genes encoding proteins with transporter activity (Table

S3B). In total, 207 of the 239 commonly affected genes re-

sponded within 30 min, whereas for the remaining 32 genes tran-

script changes were observed after 2 hr (Figure 6A; Table S4).

Interestingly, bikinin affected the expression of more genes

(181) than BL (138) and, in general, the bikinin-induced changes

in expression occurred faster. Approximately 25% of the

commonly 239 (BL and bikinin) affected genes were previously

reported to be regulated by BL in the global microarray analysis

performed by Nemhauser et al. (2006). Consistent with the nega-

tive feedback regulation model of BR biosynthesis (Mathur et al.,
r Ltd All rights reserved
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Figure 5. Specificity of Bikinin for ASK Subgroups

(A) Autoradiography of kinase assays with nine ASKs with MBP as a substrate in the presence or absence of 10 mM bikinin. The second member of group IV, ASKk,

had no kinase activity and was not included in the analysis.

(B) Autoradiography of kinase assays with AtMPK4, AtMPK6 and MBP as a substrate (left) and with AtAUR1 kinase and histone H3 as a substrate (right) in the

presence or absence of 10 mM bikinin.

(C) Model of bikinin in a homology model of BIN2. The bromo atom interacts with Met115. The nitrogen atoms hydrogen bond to the backbone of Val118 (dashed

lines). Thepyridinyl ring is sandwichedbetween Ala67and Leu172. In differentmodels, thecarboxyl group interacts withArg124and/or hydrogen bondswith Tyr117.

(D) Clustal-W (Larkin et al., 2007) multiple sequence alignment of the conserved region of the Arabidopsis ASKs and human GSK3b. Residues in gray are particularly

important to the interaction with bikinin in the ATP-binding pocket.

(E) Autoradiography of kinase assays with BIN2 and in vitro mutated versions of BIN2 using MBP as a substrate in the presence or absence of 10 mM bikinin.

Chemistry & Biology 16, 594–604, June 26, 2009 ª2009 Elsevier Ltd All rights reserved 599
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Figure 6. Scheme of the Genome-wide Transcript Analysis and Simplified Schematic Representation of the BR-Signaling Pathway and

Points of Action of BL and Bikinin

(A) Overview of the distribution of the 272 significant differentially regulated genes and their time dependency.

(B) Activation of the BR signaling cascade (dashed arrows) triggered by binding of BRs to the membrane-localized BRI1 receptor. Through a still unknown mech-

anism, this signal is transported to the nucleus where it inhibits the BIN2 kinase. Bikinin acts by direct inhibition of the activity of the group II ASK family (red arrow).

The inhibition of BIN2 kinase activity, either through an unknown signal after binding of BRs to the BRI1 receptor or after direct inhibition by bikinin, depletes the

pool of phosphorylated BES1/BZR1 proteins. By the inhibition of BIN2 and the action of the BSU1 phosphatase, non-phosphorylated BES1/BZR1 proteins accu-

mulate, which in turn activate the transcription of BR-related genes and the feedback inhibition on the BR biosynthesis.
1998), the expression of BR biosynthesis genes (CPD, DWF4,

and BR6OX2) was downregulated (Table S4A). Both bikinin

and BL treatment resulted in significant downregulation of genes

involved in the auxin pathway (e.g., PIN7, IAA29, and IAA2), as

previously reported (Goda et al., 2004; Goda et al., 2002; Müssig

et al., 2002) (Table S4A). The expression of 26 genes was

affected early by BL and only later by bikinin (Figure 6A). Among

these are several early auxin-inducible genes from the SAUR

family (SAUR-AC1, SAUR14, SAUR10, and SAUR16) and genes

involved in auxin transport (PID and WAG2) (Table S4A). This

observation is consistent with previous microarray studies

showing that BL induces the expression of the auxin-inducible

SAUR, GH3, and IAA gene families (Goda et al., 2004; Nem-

hauser et al., 2004, 2006), in a period of 30 to 60 min.

DISCUSSION

Identification of Bikinin
The GSK3b homolog BIN2 is a key player in the intracellular BR

signal transduction cascade (Belkhadir and Chory, 2006).

Although a role for proteasome-mediated protein degradation

of BIN2 has been suggested as a mechanism for posttransla-

tional BIN2 regulation (Peng et al., 2008), it is still unknown

how BIN2 activity is regulated in response to binding of BRs to

BRI1. Yet it remains unclear if other GSK3 subgroups besides

the group II GSK3s are involved in transducing BR signals, and

if GSK3-independent activation pathways of BR signaling exist.
600 Chemistry & Biology 16, 594–604, June 26, 2009 ª2009 Elsevie
Here, we screened a chemical library for compounds that

induced constitutively active BR responses. We identified bikinin

as the first nonsteroidal molecule to modulate the BR signaling

cascade downstream of the BRI1 receptor. Application of bikinin

partially restored the phenotype of the bri1 loss-of-function

mutant and the bin2 gain-of-function mutant to wild-type.

Notably, besides the typical dwarfism seen in other BR mutants

like bri1 and cpd, bin2 also shows extremely downward curled

leaves, a phenotype reminiscent of some auxin mutants (Choe

et al., 2002). Also, BIN2 was recently linked to the auxin signaling

pathway (Vert et al., 2008), suggesting that this protein sits at the

intersection between several signaling pathways and implying

that bin2 harbors more than only the typical BR phenotype. Inter-

estingly, bikinin clearly rescues the dwarfism of the hypocotyls

and the petioles of the bin2 gain-of-function mutant (Figure 2A).

However, the downward curled leaves remain visible, suggest-

ing that bikinin is fully rescuing the BR-related phenotypes

of this mutation while having no effect on the auxin-related

phenotypes.

A combination of BES1 phosphorylation analysis, kinase

assays, SPR-binding studies, and microarray analysis showed

that bikinin directly targets BIN2 (Figure 6B) and activates BR-

dependent gene expression.

Binding Mode and Specificity of Bikinin
Up to date, a large number of animal GSK3 inhibitors have been

identified as potential drugs against different diseases, and
r Ltd All rights reserved
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several of them were cocrystallized with GSK3b (Meijer et al.,

2004). Despite their wide chemical diversity, most act as an

ATP competitor (Bhat et al., 2003; Meijer et al., 2003). Because

the ATP-binding pockets of GSK3s or other closely related

kinases such as CDKs and MAP kinases are highly similar, selec-

tivity is a key issue. This is especially important when inhibitors

are used as pharmacological tools to demonstrate the involve-

ment of the GSK3 in a cellular process. Bikinin showed high

selectivity and potency toward Arabidopsis GSK3s. All other

Arabidopsis kinases (AtMPK4, AtMPK6, and AtAUR1) tested

were not inhibited by bikinin, revealing that the compound has

certain specificity toward the GSK3 subfamily of protein kinases

in Arabidopsis. It is worth noting that the MAP kinases AtMPK4

and AtMPK6 are structurally similar to GSK3 and belong to the

same subclass of protein kinases (Hanks and Hunter, 1995).

However, it cannot be excluded that bikinin affects other kinases

based on the limited number of Arabidopsis kinases tested in this

study. Interestingly, bikinin had a minor inhibitory effect on

human GSK3b in vitro and it did not affect the developmental

processes in vertebrates in vivo, as opposed to the GSK3b inhib-

itor LiCl. An ATP-competition assay with BIN2 and modeling of

bikinin into the crystal structure of the human BIN2 homolog,

GSK3b, revealed that bikinin acts as an ATP-competitive kinase

inhibitor. It has been shown that the kinase domains and key

residues in both the activation domain and the ATP-binding

pocket are highly conserved between GSK3b and ASKs (Jonak

and Hirt, 2002). Therefore, specific bikinin-interacting residues

in the ATP-binding pocket of BIN2 were predicted and confirmed

experimentally. The differences in potential bikinin-binding resi-

dues could account for the different levels of inhibition of GSK3b

and different ASK family members. Additional understanding of

the mechanisms of compound-protein interactions will allow

modulating strength and specificity of these interactions. This

way, it will be possible to further unravel the role of different

GSK3s in plant development and create tools for molecular

modeling of new GSK3b specific inhibitors.

Potential Function of Other GSK3s in BR Signaling
Compromising BIN2 activity by a loss-of-function mutation in the

BIN2 gene has a minor effect on BR responses. This observation

has led to the conclusion that other GSK3s, among the ten found

in the Arabidopsis genome, might act redundantly with BIN2 in

the BR pathway (Vert and Chory, 2006). Although individual

loss-of-function mutants of the two closest BIN2 homologs

had no effect on BR signaling, gain-of-function mutations indi-

cated that the two other members of group II GSK3s function

in BR signaling as well. This was further confirmed by the consti-

tutive BR response phenotype of the triple knockout for group II

GSK3s (Vert and Chory, 2006), which suggests that all members

of group II GSK3s are implicated in BR signaling. By contrast, the

absence of total dephosphorylation of BES1 in the triple group II

GSK3 mutant suggests that BES1 might be targeted by addi-

tional kinases (Vert and Chory, 2006). In agreement with the

group II GSK3 triple knockout, application of bikinin resulted in

a constitutive BR response phenotype. However, in the case of

bikinin, members of group I and ASKq were also strongly in-

hibited in vitro, a new finding that could not be revealed earlier

by mutant analysis. The inhibitory effect of bikinin in vitro for

four additional GSK3s, the very specific BR response phenotype
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induced by bikinin and the large overlap of downstream tran-

scriptional regulation between bikinin and BL are compelling

and suggest that the group I GSK3s and ASKq might be involved

in BR signaling as well. This conclusion is further supported by

the fact that group I GSK3s and ASKq, in addition to group II

GSK3s, have overlapping expression patterns and are highly

expressed in young seedlings (Charrier et al., 2002), a develop-

mental stage at which BL and bikinin exerted strong phenotypic

effects in the chemical genetics screen.

Inhibition of Seven GSK3s by Bikinin Argues against
GSK3-Independent BR Signaling
Previous studies demonstrated a functional conservation of

GSK3s as negative regulators in signal transduction pathways

in plants and animals (Jonak and Hirt, 2002). Nevertheless, it

remains unknown to what extent BR signaling is entirely de-

pendent on GSK3s, or whether GSK3-independent signaling

cascades downstream of the receptor exist. The transcriptome

analysis of the early effect of BL and bikinin treatments presented

here demonstrates that nearly all genes regulated by BL are regu-

lated by bikinin as well. Thus, activation of the BR pathway by

binding of BL to the BRI1 receptor is highly comparable to the

direct inhibition of GSK3s by bikinin. Taking into consideration

the high specificity of bikinin toward GSK3 subgroups, these

data suggest that transducing the BL-induced signal depends

on inhibition of specific GSK3s, and argues against the existence

of BR signaling pathways that act independently of GSK3s.

SIGNIFICANCE

The availability of a synthetic chemical that activates BR

signaling downstream of the BRI1 receptor, more specifi-

cally at the level of the GSK3s, will allow to further unravel

the role of these GSK3s in BR signaling. Also, further under-

standing of the mechanisms of the compound-protein inter-

actions will open new possibilities to modulate the strength

and/or specificity of these interactions and will support

further studies on the role of the different GSK3s in plant

development. More generally, the specificity of bikinin for

a subset of GSK3s offers the opportunity to study other

effects of specifically inhibiting GSK3s in Arabidopsis thali-

ana. Furthermore, identification of the amino acids that are

crucial for the specificity of bikinin will provide a better

understanding of specific GSK3 inhibition mechanisms in

plants, which could also be extrapolated to the mammalian

homolog GSK3b and can be potentially useful for the devel-

opment of specific GSK3b inhibitors.

EXPERIMENTAL PROCEDURES

Bikinin, Derivatives, and Other Compounds

24-Epibrassinolide (BL) was purchased from Fuji Chemical Industries

(Toyama, Japan) and bikinin and all derivative molecules from ChemBridge

Corporation (ID for Bikinin: 5122035, Var1: 5122029, Var2: 5133967, Var3:

5843203, Var4: 5121777 and Var5: 5310341).

Chemical Genetics Screening and Growth Conditions

A commercial 10,000 compound library (DIVERSet, ChemBridge Corporation)

was screened for a combination of phenotypes indicative of a constitutive BR

response at a final concentration of 50 mM in 2% DMSO. Seeds (three or four)
, 594–604, June 26, 2009 ª2009 Elsevier Ltd All rights reserved 601
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of Arabidopsis thaliana (L.) Heynh. were sown in 96-well filter plates (Multi-

screen HTS MSBVS1210; Millipore) in liquid medium derived from standard

Murashige and Skoog (MS) medium and incubated in a growth chamber under

continuous light (110 mE.m�2$s�1 photosynthetically active radiation, supplied

by cool-white fluorescent tungsten tubes; Osram) at 22�C. Three days after

germination, compounds were added to the 96-well plates. Plants incubated

in 2% DMSO and 1 mM BL were used as negative and positive control, respec-

tively. Plants were phenotypically analyzed 6 days after germination. For all

subsequent phenotypic analyses, plants were grown on plates (Greiner Labor-

technik) with solid medium derived from standard MS medium under the same

conditions. For the hypocotyl elongation assay, plants were grown in the dark

at 22�C.

Scanning Electron Microscopy

For scanning electron microscopy pictures, plants were treated as indicated in

Figure 1 and scanned using a Hitachi TM1000 tabletop scanning electron

microscope after fixation in 1% OsO4 for 2 hr and subsequent dehydration

with ethanol.

Western Blotting

For protein extraction, 6-day-old seedlings were grown under standard condi-

tions as described above on solid medium. Subsequently, plants were soaked

in liquid MS medium supplemented with the indicated compounds or mock (for

concentrations and periods, see Figure 3). Plants were frozen in liquid nitrogen,

ground, and homogenized in ice-cold homogenization buffer (25 mM Tris-HCl

[pH 8], 5 mM EDTA, 1 mM b-mercapto-ethanol, 15 mM MgCl2, 85 mM NaCl,

0.1% Tween 20, and 1 protease inhibitor tablet/50 ml Complete [Roche Diag-

nostics]). The homogenate was centrifuged twice (5 min; 20,800 3 g) in an

Eppendorf centrifuge 5417 at 4�C. After addition of loading buffer, the samples

were heated for 10 min at 95�C, centrifuged again, separated on a 12% acryl-

amide gel or a 4%–20% gradient precast gel (Bio-Rad), and blotted on nitrocel-

lulose membranes (Hybond-C super, GE-Healthcare) in 190 mM glycine and

25 mM Tris-HCl with a mini-blotting system (Bio-Rad) for 2 hr. Membranes

were blocked overnight at 4�C in blotting buffer (0.01 M Tris-HCl [pH 8.0],

0.15 M NaCl, 3% skim milk [BD Difco], and 0.1% Triton). For immunodetection,

anti-BES1 antibodies at 1:2000 and anti-GFP at 1:1000 dilutions were used as

primary antibodies. Secondary antibodies were used at 1:10,000 dilutions. The

proteins were detected by chemiluminescence (Perkin-Elmer).

Quantitative Real-Time Polymerase Chain Reaction

RNA was extracted with the RNeasy kit (QIAGEN). Poly(dT) cDNA was

prepared from 1 mg total RNA with Superscript III reverse transcriptase (Invitro-

gen) and analyzed on an LightCycler 480 apparatus (Roche Diagnostics) with

the SYBR Green I Master kit (Roche Diagnostics) according to the manufac-

turer’s instructions. Targets were quantified with specific primer pairs de-

signed with the Beacon Designer 4.0 (Premier Biosoft International) (Table

S5). All individual reactions were done in triplicate. Data were analyzed with

qBase (Hellemans et al., 2007). Expression levels were normalized to those

of EEF1a4 and CDKA1;1.

Kinase Assays

The BIN2 kinase assay with GST-BIN2 and maltose binding protein (MaBP)

fused to BES1 (MaBP-BES1) as a substrate was done as reported elsewhere

(Yin et al., 2002). Kinase assays of the ASKs, AtMPK4 and AtMPK6 with myelin

basic protein (MBP), AURORA1 with histone H3, and of the human kinases as

described previously (Bain et al., 2003; Demidov et al., 2005; Kiegerl et al.,

2000). Comparable activities of the different ASKs were used. For one partic-

ular kinase equal amounts (ranging from 20 to 100 ng depending on the innate

kinase activity) were used in the assays with and without bikinin.

In Vitro Mutagenesis

For in vitro mutagenesis of BIN2, polymerase chain reaction (PCR) was per-

formed according to the protocol for Pfu Ultra High Fidelity DNA Polymerase

from Stratagene. The primers used for in vitro mutagenesis of BIN2 are listed

in Table S6.
602 Chemistry & Biology 16, 594–604, June 26, 2009 ª2009 Elsevie
SPR Analysis

A Biacore T100 instrument was used to analyze the interaction of bikinin with

BIN2. Using amine coupling, purified GST-BIN2 was immobilized in the flow

cell of a Series S CM5 Sensor Chip (Research Grade, Biacore AB). HBS-EP

(Biacore AB) was used as running buffer, flow rate was set at 5 ml/min. The

surface of the chip was activated by injecting a mixture of EDC (0.2 M) and

NHS (0.05 M) for 10 min. Subsequently, 20 mg/ml GST-BIN2 in 10 mM sodium

acetate buffer (pH 6.0) was injected for 20 min. The immobilization level of

GST-BIN2 was z20,000 RU. The chip was flushed with 1 M ethanolamine

(pH 8.5) for 10 min to deactivate the surface. A flow cell treated with a cycle

of activation and deactivation without immobilized protein was used as a refer-

ence. Bikinin was bound to GST-BIN2 in HBS-EP running buffer (Biacore AB)

supplemented with 10 mM MgCl2. Different concentrations of bikinin dis-

solved in running buffer were injected at a flow rate of 30 ml/min over the

reference and the GST-BIN2 flow cell for 90 s, followed by 180 s of buffer

flow (dissociation phase). Zero concentration samples were used as blanks.

The absolute response level in the reference cell (background) was z40,000

RU, the absolute response level in the flow cell with immobilized GST-BIN2

was z60,000 RU. The flow cell temperature was set to 25�C. Biacore T100

evaluation software (version 1.1.) was used for curve fitting, assuming a 1:1

binding model.

Bikinin Modeling

A bikinin molecule was built in molecular operating environment (chemical

computing group) and energy minimized (Amber99 forcefield with Born solva-

tion). eHits (Zsoldos et al., 2007) was used to dock the bikinin molecule into the

apo structures of GSK3b with Protein Data Bank codes 1UV5 and 1Q5K. The

docking results were visualized and evaluated with CheVi (Sim BioSys).

Homology models for all Arabidopsis GSK3s were built with automodel in

modeler (Šali and Blundell, 1993) and t_coffee (Notredame et al., 2000)

multiple alignment, with the 1UV5 structure of GSK3b as a template.

Microarray Analysis and Statistical Data Processing

Arabidopsis thaliana (L). Heynh., ecotype Columbia (Col-0) seeds were germi-

nated vertically on solid medium derived from standard MS medium for 7 days

under 16 hr light/8 hr dark cycles. The seedlings were immersed in liquid

medium containing 1 mM BL, 30 mM bikinin or DMSO as a mock control for

0.5 and 2 hr. Shoots were collected for RNA isolation. All sampling points

were performed in three independent experiments. RNA was extracted as

described for quantitative real-time PCR analysis. Total RNA (200 mg per array)

was used to hybridize ATH1 Affymetrix Arabidopsis arrays according to stan-

dard procedures. The expression values were RMA normalized (Irizarry et al.,

2003) with R (www.r-project.org) and the Bioconductor package affylmGUI

(http://bioinf.wehi.edu.au/affylmGUI/) and subsequently a two-factor analysis

of variance was performed in TMEV4.0 (Saeed et al., 2003). The overrepresen-

tation of GO groups on sets of differentially expressed genes was analyzed

with the BiNGO software (Maere et al., 2005).

SUPPLEMENTAL DATA

Supplemental Data include six figures and six tables and can be found with this

article online at http://www.cell.com/chemistry-biology/supplemental/S1074-

5521(09)00141-0.
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